
ufo2fdk Documentation
Release 0.1

Tal Leming

Sep 03, 2019





Contents

1 Basic Usage 3

2 Indices and tables 7

Python Module Index 9

Index 11

i



ii



ufo2fdk Documentation, Release 0.1

ufo2fdk is a package that handles the creation of OpenType-CFF fonts from UFO source files with the aid of the
Adobe Font Development Kit for OpenType (AFDKO aka FDK). This package does not embedd the FDK, rather it
bridges to it on the user’s system with the expectation that the user has installed the FDK in the normal way.

The fonts created by the package should be considered only for beta usage and should be used with care.

Contents 1

http://www.adobe.com/devnet/opentype/afdko/


ufo2fdk Documentation, Release 0.1

2 Contents



CHAPTER 1

Basic Usage

Two main things are exposed for public use: haveFDK and OTFCompiler.

1.1 haveFDK

This function tests the availability of the FDK and returns a boolean indicating what was found. Example:

from ufo2fdk import haveFDK

if haveFDK():
print "I found the FDK!"

else:
print "I'm sorry, I could not find the FDK."

1.2 OTFCompiler

Example:

from ufo2FDK import OTFCompiler

compiler = OTFCompiler()
reports = compiler.compile(font, "/MyDirectory/MyFont.otf", checkOutlines=True,
→˓autohint=True)
print reports["checkOutlines"]
print reports["autohint"]
print reports["makeotf"]

That’s all there is to it.

3



ufo2fdk Documentation, Release 0.1

1.3 Naming Data

As with any OpenType compiler, you have to set the font naming data to a particular standard for your naming to be
set correctly. In ufo2fdk, you can get away with setting two naming attributes in your font.info object for simple fonts:

• familyName: The name for your family. For example, “My Garamond”.

• styleName: The style name for this particular font. For example, “Display Light Italic”

ufo2fdk will create all of the other naming data based on thse two fields. If you want to use the fully automatic naming
system, all of the other name attributes should be set to None in your font. However, if you want to override the
automated system at any level, you can specify particular naming attributes and ufo2fdk will honor your settings.
You don’t have to set all of the attributes, just the ones you don’t want to be automated. For example, in the family
“My Garamond” you have eight weights. It would be nice to style map the italics to the romans for each weight.
To do this, in the individual romans and italics, you need to set the style mapping data. This is done through the
styleMapFamilyName and styleMapStyleName attributes. In each of your roman and italic pairs you would
do this:

My Garamond-Light.ufo

• familyName = “My Garamond”

• styleName = “Light”

• styleMapFamilyName = “My Garamond Display Light”

• styleMapStyleName = “regular”

My Garamond-Light Italic.ufo

• familyName = “My Garamond”

• styleName = “Display Light Italic”

• styleMapFamilyName = “My Garamond Display Light”

• styleMapStyleName = “italic”

My Garamond-Book.ufo

• familyName = “My Garamond”

• styleName = “Book”

• styleMapFamilyName = “My Garamond Display Book”

• styleMapStyleName = “regular”

My Garamond-Book Italic.ufo

• familyName = “My Garamond”

• styleName = “Display Book Italic”

• styleMapFamilyName = “My Garamond Display Book”

• styleMapStyleName = “italic”

etc.

The full details of how the names are created is available in the fontInfoData documentation. The usage of
the names is detailed in the makeotfParts documentation.

Additionally, if you have defined any naming data, or any data for that matter, in table definitions within your font’s
features that data will be honored.

4 Chapter 1. Basic Usage



ufo2fdk Documentation, Release 0.1

1.4 Kerning Data

If your font’s features, and any files included in your font’s features, do not contain a kerning feature, ufo2fdk will
create one based on your font’s kerning data. Do to the complexities in how raw kerning data is translated into a
kerning feature, it is safest to use your preferred kerning editor to create the kerning feature if possible.

1.5 Internals

If you want to know how the bridging works, what information is needed in the source UFO, how to modify the
internal behavior to fit your needs, etc. read on:

1.5.1 fdkBridge

1.5.2 makeotfParts

1.5.3 outlineOTF

1.5.4 kernFeatureWriter

1.5.5 fontInfoData

Main Functions

Static Fallbacks

Most of the fallbacks have static values. To see what is set for these, look at the source code’s staticFallbackData
definition.

Special Fallbacks

In some cases, the fallback values are dynamically generated from other data in the info object. These are handled
internally with functions.

1.4. Kerning Data 5



ufo2fdk Documentation, Release 0.1

6 Chapter 1. Basic Usage



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

7



ufo2fdk Documentation, Release 0.1

8 Chapter 2. Indices and tables



Python Module Index

u
ufo2fdk, 1

9



ufo2fdk Documentation, Release 0.1

10 Python Module Index



Index

U
ufo2fdk (module), 1, 5

11


	Basic Usage
	Indices and tables
	Python Module Index
	Index

